Начальная школа

Русский язык

Литература

История России

Всемирная история

Биология

География

Математика

Задачи «В стране рыцарей и лжецов»

 Задачи для 5 классов

1.Трое жителей острова (А, B и C) разговаривали между собой в саду. Проходивший мимо незнакомец спросил у A: "Вы рыцарь или лжец?" Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у B: "Что сказал A?" "А сказал, что он лжец", - ответил B. "Не верьте B! Он лжет! - вмешался в разговор островитянин C. Кто из островитян B и C рыцарь и кто лжец?

2. Перед нами снова три островитянина A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец. Двое из них (А и B) высказывают следующие утверждения: A: Мы все лжецы.B: Один из нас рыцарь.Кто из трех островитян A, B и C рыцарь и кто лжец?

3. Перед нами трое людей A, B и C. Один из них рыцарь, другой лжец и третий - нормальный человек (типы людей могут быть перечислены не в том же порядке, в каком выписаны их "имена" A, B и C). Наши знакомые высказывают следующие утверждения.A: Я нормальный человек.B: Это правда. C: Я не нормальный человек.Кто такие A, B и C?

Задачи для 6-ых классов

1.Трое людей A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец, либо нормальный человек, высказывают следующие утверждения: A:

B по рангу выше, чем C.

B: C по рангу выше, чем A.

Затем у C спрашивают: "Кто старше по рангу - A или B?" Что ответит C?

2. Как-то раз встретились два островитянина и один сказал другому: «По крайней мере один из нас – лжец». История умалчивает, ответил ли ему на это что-либо собеседник. Тем не менее определите, кем являются оба?

3.Двое людей A и B, о которых известно, что каждый из них либо рыцарь, либо лжец, либо нормальный человек, высказывают следующие утверждения: A: B - рыцарь.B: A - не рыцарь.Докажите, что по крайней мере один из них говорит правду, но это нерыцарь.

vvv2

Задачи для 7-ых классов

1.Трое людей A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец, либо нормальный человек, высказывают следующие утверждения: A: B по рангу выше, чем C.B: C по рангу выше, чем A.Затем у C спрашивают: "Кто старше по рангу - A или B?" Что ответит C?

2.Давным-давно островитянин Дерб сказал своим друзьям: - Вчера мой сосед заявил мне, что он лжец! Кем является Дерб — рыцарем или лжецом?

3. Однажды в четверг после дождя между островитянами Тимом и Томом произошел следующий диалог: - Ты можешь сказать, что я рыцарь, - гордо заявил Тим. - Ты можешь сказать, что я лжец, - грустно ответил ему Том. Кем являются Тим и Том?

vvv3

Задачи для 8-ых классов

1.Перед нами трое людей A, B и C. Один из них рыцарь, другой лжец и третий - нормальный человек. Этилюди высказывают следующие утверждения.

A: Я нормальный человек.

B: Это правда.

C: Я не нормальный человек.

Кто такие A, B и C?

2.По кругу сидят рыцари и лжецы – всего 12 человек. Каждый из них сделал заявление: «Все кроме, быть может, меня и моих соседей – лжецы". Сколько рыцарей сидит за столом, если известно, что лжецы всегда врут, а рыцари всегда говорят правду?

3.На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес фразу «Все мои друзья — рыцари», либо «Все мои друзья — лжецы», причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой лжец.

vvv4

Ответы на задачи для 5-ых классов

1.Решение: Ни рыцарь, ни лжец не могут сказать: "Я лжец" (высказав подобное утверждение, рыцарь солгал бы, а лжец изрек бы истину). Следовательно, A, кем бы он ни был, не мог сказать о себе, что он лжец. Поэтому B, утверждая, будто A назвал себя лжецом, заведомо лгал. Значит, B - лжец. А так как C сказал, что B лгал, когда тот действительно лгал, то C изрек истину. Следовательно, C - рыцарь. Таким образом, B - лжец, а C - рыцарь. (Установить, кем был A, не представляется возможным).

Ответ: С-рыцарь, В-лжец.

2. Прежде всего, заметим, что A должен быть лжецом. Действительно, если бы A был рыцарем, то из его высказывания следовало бы, что все трое лжецы. Но тогда A (по предположению, рыцарь) оказался бы лжецом, что невозможно. Следовательно, A - лжец. Но тогда его высказывание ложно и по крайней мере один из трех островитян A, B и C - рыцарь.Предположим теперь, что B - лжец. Тогда A и B - оба лжецы, поэтому C должен быть рыцарем (так как, по крайней мере, один из трех островитян рыцарь). Это означает, что ровно один из трех островитян рыцарь, и, следовательно, высказывание B истинно, но это невозможно, так как любое высказывание лжеца не истинно. Отсюда мы заключаем, что B должен быть рыцарем. 
Итак, мы установили, что A - лжец, а B - рыцарь. Так как B - рыцарь, то его высказывание истинно, поэтому ровно один из трех островитян - рыцарь. Им должен быть B, следовательно, C должен быть лжецом. Итак, A - лжец, B - рыцарь и C - лжец. Ответ: А-лжец, В-рыцарь, С-лжец.3. Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвалбысебянормальным человеком. Следовательно, A - либо лжец, либо нормальный человек. Тогда истинно высказывание островитянина B. Значит, B - либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A - нормальный человек), поэтому B - рыцарь, а C - лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец - не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком. Следовательно, A - лжец. Это означает, что высказывание островитянина B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец - островитянин A). Итак, A - лжец, а B - нормальный человек. Отсюда мы заключаем, что А-рыцарь, В-нормальный человек, С-лжец.

Ответы на задачи для 6-ых классов

1. Первый шаг. Прежде всего докажем, что в силу высказывания A островитянин C не может быть нормальным человеком. Действительно, если A - рыцарь, то B - особа более высокого ранга, чем C. Следовательно, B должен быть нормальным человеком, а C - лжецом. Таким образом, в этом случае C - не нормальный человек. Предположим, что A - лжец. Тогда B по рангу не выше C. Следовательно, B - особа более низкого ранга, поэтому B должен быть нормальным человеком, а C - рыцарем. Таким образом, и в этом случае C - не нормальный человек. Предположим, наконец, что A - нормальный человек. Тогда C - заведомо не нормальный человек (так как из трех островитян A, B и C только один – нормальный человек). Итак, C - не нормальный человек.

Второй шаг. При аналогичных рассуждениях из высказывания B можно вывести, что A - не нормальный человек. Таким образом, ни A, ни C не нормальны. Следовательно, B - нормальный человек.

Третий шаг. Поскольку C - не нормальный человек, то он может быть рыцарем или лжецом. Предположим, что он рыцарь. Тогда A - лжец (так как B - нормальный человек). Следовательно, B - особа более высокого ранга, чем A, и C, будучи рыцарем, даст правдивый ответ: "В по рангу выше A". С другой стороны предположим, что C - лжец. Тогда A должен быть рыцарем, поэтому B по рангу не выше A. В этом случае C, будучи лжецом, солгал бы и ответил так: "В по рангу выше A". Таким образом, независимо от того, кто такой островитянин C - рыцарь или лжец, он ответит, что B по рангу выше A

2. Пусть первый островитянин является лжецом. Тогда получается, что он сказал правду, чего быть не может.

Значит, он рыцарь. Тогда он сказал правду, значит, один из них лжец. Поскольку про первого уже знаем, что он рыцарь, то лжецом может быть только второй.

Эта задача обладает интересной особенностью. Условия ее не позволяют установить, кто из двух островитян говорит правду, не будучи рыцарем: A или B. Мы можем доказать более слабое утверждение: по крайней мере один из двух островитян A и B говорит правду, не будучи рыцарем. Островитянин A либо говорит правду, либо не говорит правду. Докажем два утверждения: 1) если A говорит правду, то он говорит правду, не будучи рыцарем; 2) если A лжет, то B говорит правду, не будучи рыцарем.

1) Предположим, что A говорит правду. Тогда B - рыцарь и, следовательно, говорит правду. Значит, A - не рыцарь. Таким образом, если A говорит правду, то A - лицо, говорящее правду, не будучи рыцарем.2) Предположим, что A не говорит правду. Тогда B - не рыцарь. Но B должен говорить правду, так как A не может быть рыцарем (ведь A не говорит правду). Следовательно, в этом случае B говорит правду, не будучи рыцарем.

Ответы на задачи для 7-ых классов

1.Первый шаг. Прежде всего докажем, что в силу высказывания A островитянин C не может быть нормальным человеком. Действительно, если A - рыцарь, то B - особа более высокого ранга, чем C. Следовательно, B должен быть нормальным человеком, а C - лжецом. Таким образом, в этом случае C - не нормальный человек. Предположим, что A - лжец. Тогда B по рангу не выше C. Следовательно, B - особа более низкого ранга, поэтому B должен быть нормальным человеком, а C - рыцарем. Таким образом, и в этом случае C - не нормальный человек. Предположим, наконец, что A - нормальный человек. Тогда C - заведомо не нормальный человек (так как из трех островитян A, B и C только один – нормальный человек). Итак, C - не нормальный человек.Второй шаг. При аналогичных рассуждениях из высказывания B можно вывести, что A - не нормальный человек. Таким образом, ни A, ни C не нормальны. Следовательно, B - нормальный человек. Третий шаг. Поскольку C - не нормальный человек, то он может быть рыцарем или лжецом. Предположим, что он рыцарь. Тогда A - лжец (так как B - нормальный человек). Следовательно, B - особа более высокого ранга, чем A, и C, будучи рыцарем, даст правдивый ответ: "В по рангу выше A". С другой стороны предположим, что C - лжец. Тогда A должен быть рыцарем, поэтому B по рангу не выше A. В этом случае C, будучи лжецом, солгал бы и ответил так: "В по рангу выше A". Таким образом, независимо от того, кто такой островитянин C - рыцарь или лжец, он ответит, что B по рангу выше A.

2. Так как про соседа Дерба неизвестно, кем он является, то придётся рассмотреть два случая:

1) Если сосед Дерба - рыцарь, тогда то, что он заявил Дербу, должно быть правдой, то есть он должен быть лжецом. Но мы предположили, что он рыцарь. Значит, такого не может быть.

2) Если сосед Дерба - лжец, то он сказал Дербу неправду, то есть неправда, что он лжец. Снова противоречие.

Итак, если бы сосед Дерба сказал ему, что он лжец, то в любом случае получилось бы противоречие, то есть, такого быть не могло. Вывод: сосед Дерба этого вообще не говорил!Значит, Дерб лжёт.

3. Пусть Тим — рыцарь, то есть говорит правду. Тогда Том может сказать, что Тим рыцарь. Поскольку это правда, то получается, что Том может сказать правду, значит, Том тоже рыцарь. Но тогда сказанное Томом тоже должно быть правдой, но на самом деле Тим не сможет сказать, что он лжец, потому что он не лжец, а Тим не врёт. Противоречие.

Значит, Тим — лжец. Тогда Том не может сказать, что он рыцарь, то есть Том не может сказать неправду. Значит, Том рыцарь. И действительно, слова Тома — правда, потому что Тим может соврать, сказав, будто Том лжец.

Ответы на задачи для 8-ых классов

Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвал бы себя нормальным человеком. Следовательно получается, что, A - либо лжец, либо нормальный человек. Тогда истинно высказывание человека B. Значит, B - либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A - нормальный человек), поэтому B - это доблестный рыцарь, а C - маленький лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец - не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком. Следовательно, A - хитрый лжец. Это означает, что высказывание человека B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец - человек A). Итак, A - хитрый лжец, а B - нормальный человек. Отсюда мы заключаем, что C - доблестный рыцарь.

2.Все не могут быть лжецами – тогда все заявления были бы истинными. Значит, есть рыцарь. Все, кроме, быть может, его двух соседей – лжецы. Оба соседа не могут быть лжецами – тогда они сказали бы правду; оба не могут быть рыцарями – тогда бы они солгали. Единственная оставшаяся возможность – один сосед — лжец, другой – рыцарь (то есть два рыцаря рядом, остальные — лжецы) удовлетворяет условиям задачи.

Ответ: 2 рыцаря.

3. Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвал бы себя нормальным человеком. Следовательно получается, что, A - либо лжец, либо нормальный человек. Тогда истинно высказывание человека B. Значит, B - либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A - нормальный человек), поэтому B - это доблестный рыцарь, а C - маленький лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец - не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком. Следовательно, A - хитрый лжец. Это означает, что высказывание человека B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец - человек A). Итак, A - хитрый лжец, а B - нормальный человек. Отсюда мы заключаем, что C - доблестный рыцарь.

vvv5

Поиск

Информатика

Физика

Химия

Классному руководителю

Яндекс.Метрика logo --> Рейтинг@Mail.ru logo --> counter --> counter -->