Начальная школа

Русский язык

Литература

История России

Всемирная история

Биология

География

Математика

ЛЕТЯЩИЕ ПО ВОЛНАМ

 

В этом Козьма Прутков, безусловно, прав, тут не поспоришь. Уметь быстро двигаться -очень важно для любого животного. Так и добычу вернее нагонишь, и от врага спасешься. И надо сразу сказать, что по быстроте движения дельфины — большие мастера. Хотя обычно дельфин движется со скоростью 10—15 километров в час, но, если понадобится, может лететь в воде со скоростью больше 40 километров в час.

Эка невидаль, скажете вы, 40 километров в час! Да любой автомобиль может выжать все 100, а то и больше, а уж о самолетах и ракетах и говорить нечего.

Не торопитесь с таким заключением. Примите во внимание, во-первых, что автомобиль движется по гладкой дороге и преодолевать ему приходится лишь сопротивление воздуха — субстанцию очень легкую и податливую. Дельфину же при движении приходится преодолевать сопротивление воды — вещества почти в тысячу раз более плотного, чем воздух. Во-вторых, современный автомобиль имеет двигатель мощностью около 100 лошадиных сил, а то и побольше. Дельфин же располагает «двигателем» мощностью в одну-единственную дельфинью силу. Так что с учетом всех этих обстоятельств скоростные возможности дельфинов оказываются совершенно рекордными.

Далеко не сразу все ученые согласились с тем, что дельфины вообще могут двигаться с такой скоростью. Конечно, то, что они могут плавать очень быстро, было известно давно, но что значит «очень»? Многие моряки не раз рассказывали о необыкновенной скорости, с которой дельфины легко догоняют и перегоняют быстроходные суда. Но человеческий глаз — не самый совершенный инструмент для измерения скорости, в особенности если события разворачиваются на фоне волн, бегущих по пути или навстречу движущемуся животному. Может быть, все восторги по поводу быстроходности дельфинов преувеличены?

Только специально спланированные измерения могут дать точный ответ. Для этого дельфинов обучают плавать на скорость в особо оборудованной акватории, где трасса проплыва размечена буйками, а фото-, кино- или видеокамеры фиксируют положение плывущего дельфина в каждый момент времени, и можно точно установить, какой отрезок пути с какой скоростью пройден. Чтобы «объяснить» дельфинам, что от них требуется плыть как можно быстрее, придумывали разные способы. Можно поощрять животных только в том случае, если они доплывают до финиша не позже определенно го момента, и это отведенное для проплыва время по степенно сокращать, побуждая дельфина двигаться все быстрее и быстрее. Можно варьировать количество поощряющего корма: проплыл быстрее — получи больше рыбы. А одна команда экспериментаторов придумала использовать такой простой и эффективный способ, как научить дельфина плавать вдогонку за «приманкой» игрушкой на длинном шнуре, который наматывается на барабан лебедки, вращающийся с разной скоростью. Для дельфина такое плавание наперегонки -замечательное развлечение, которому он быстро обучается и с удовольствием участвует в этой игре, а если в конце каждого проплыва его ждет еще и вознаграждение в виде рыбки, то тем лучше. В общем, это примерно то же, что погоня за механическим «зайцем» на собачьих бегах. Если поощрять дельфина только в том случае, когда он приходит к финишу одновременно с «зайцем», то животное быстро соображает, что к чему, и к плаванию на перегонки относится с полной ответственностью, выкладываясь «от души». Именно так и были установлены и строго зафиксированы рекордные показатели дельфиньего плавания. Барабан лебедки вращали все быстрее и быстрее, приманка летела по поверхности воды с огромной скоростью, а дельфин не отставал от нее, раз за разом приходя к финишу вместе с приманкой. Только когда скорость приманки превысила 21—22 узла (узел это единица скорости, используемая моряками и равная одной морской миле, то есть 1,85 километра час), дельфин сдался. А это и есть примерно 40 километров в час. Кстати, есть и другой довольно простой способ узнать, какую предельную скорость могут развивать дельфины. Дело в том, что они хорошие прыгуны — часто выпрыгивают из воды на довольно большую высоту. В естественных условиях они делают это, видимо, просто чтобы поразвлечься. А в зрелищных дельфинариях животных специально обучают и тренируют, чтобы они по команде демонстрировали свои замечательно красивые прыжки. Они уверенно прыгают на высоту до пяти метров, иногда и повыше. Но что представляет собой прыжок дельфина? Он ведь не может сильно оттолкнуться от твердой поверхности, как это делает спортсмен-прыгун. Чтобы выпрыгнуть из воды, дельфин должен разогнаться под водой до довольно значительной скорости; тогда он по инерции может вылететь из воды вверх — на тем большую высоту, чем выше скорость. Какова должна быть скорость тела, чтобы оно, преодолевая силу тяжести, взлетело вверх на пять метров? Это задачка из школьного учебника физики. Любопытные могут легко найти там необходимые формулы и сделать расчет сами. Ну а я уж не буду мучить расчетами тех, кто не слишком любопытен, готов принять на веру: чтобы взлететь на пятиметровую высоту, скорость в момент отрыва от воды должна быть равна 10 метрам в секунду, то есть 36 километрам в час. Но это в идеале — если скорость направлена точно вверх и не происходит никаких потерь энергии на преодоление сопротивления воды в момент отрыва. А в реальных условиях и потери есть, и вылетает из воды дельфин не точно вверх, а под некоторым углом, так что нужно накинуть еще несколько километров — получится как раз около 40 километров в час или даже чуть побольше, примерно то же, что дали эксперименты с гонками за «зайцем».

До сих пор не вполне понятно, как удается дельфинам развивать такую скорость. Конечно, обтекаемая торпедообразная форма тела как нельзя лучше приспособлена к движению в плотной водной среде. Но этого мало. Обязательно нужно иметь хороший орган движения, который эффективно превращал бы мускульную энергию дельфина в энергию движения, толкал бы тело вперед. Такой орган (у животного) или механизм (у машины) называют движителем (не путайте с двигателем: например, у автомобиля, корабля, самолета двигатель это мотор, а движитель — соответственно ведущие колеса, водный или воздушный винт). У дельфина движитель — это его хвостовой плавник, приспособление во многих отношениях замечательное. Горизонтальная гребущая лопасть хвостового плавника расположена на конце хвостового стебля и может поворачиваться вокруг точки крепления. Причем никакого сустава в этой точке нет, потому что в хвостовой лопасти нет костей скелета, но она закреплена на связках так, как будто там есть самый настоящий сустав или ось вращения. Поворачиваясь вокруг этой точки, хвостовая лопасть меняет свой угол относительно набегающего потока воды (его называют углом атаки) так, чтобы при взмахах хвоста вверх-вниз максимально отбрасывать назад струю воды и, отталкиваясь от нее, создавать наибольшее продвижение вперед. Примерно так же действуют ласты аквалангиста. Но именно примерно, а не точно так же. Ласты аквалангиста меняют угол атаки просто потому, что эластичная резиновая лопасть отгибается под напором воды. Дельфин же управляет своим хвостом активно, с помощью мышц и связок. Он всегда может повернуть лопасть под таким углом, чтобы при данной скорости движения этот движитель работал наиболее эффективно.

А сам хвостовой стебель, на котором закреплена лопасть, тоже испытывает сопротивление воды? Практически нет. Стебель сильно сплюснут с боков, поэтому при движениях вверх-вниз он, как нож, разрезает воду, практически не встречая сопротивления. Весь упор приходится на саму лопасть, повернутую под таким углом, чтобы сопротивление воды обратилось в тягу, толкающую тело дельфина вперед.

Своим хвостом-движителем дельфин управляет артистически. Режимы его работы — частота и амплитуда взмахов -всегда выбираются такими, чтобы достичь максимального эффекта при данной скорости движения. Когда дельфин только начинает разгон, хвост его описывает широкие, размашистые движения, помогающие разогнать с места массивное тело. По мере увеличения скорости несущийся навстречу поток воды сделал бы такие движения неэффективными, но характер работы хвоста меняется, его взмахи становятся все более короткими и быстрыми — при любой скорости находится оптимальный режим, дающий наилучшую отдачу.

Но, оказывается, иметь эффективный и послушный в управлении движитель — это лишь полдела. Более полу века назад английский зоолог Грэй попытался подсчитать, какую мощность может и должен тратить дельфин для движения с той скоростью, которую он способен развивать. Сделать такой расчет вполне возможно. С одной стороны, есть хорошо проверенные физические формулы, по которым можно рассчитать, сколько энергии требуется, чтобы тело такой же формы и такого раз мера, как тело дельфина, преодолевало сопротивление воды с определенной скоростью. С другой стороны, физиологи могут подсчитать энергетические ресурсы организма и оценить, какой энергией реально располагает дельфин, чтобы вложить ее в свой «двигатель». Грэй подсчитал то и другое. Сравнил. И очень удивился. Оказалось, что дельфин вроде бы должен тратить для своего движения в несколько раз большую энергию, чем та, которой он реально может располагать. Этот результат стал известен как «парадокс Грэя».

Конечно, закон сохранения энергии никто не отменял. Дельфин не может брать энергию «ниоткуда». Значит, он обходится тем относительно небольшим ресурсом энергии, который есть в его распоряжении, но расходует его намного экономнее и эффективнее, чем известные механические устройства. Значит, и тут есть у него свой секрет. И что самое интересное — приблизительно даже было известно, где искать этот секрет. И все равно найти его оказалось не очень легко.

А искать надо было вот где. Давно известно, что, когда какое-то тело движется в воде (или в воздухе, или другой среде, но для определенности давайте говорить о воде), обтекание тела водой не всегда происходит равно мерно, даже если это тело идеальной обтекаемой формы. При относительно небольшой скорости струи воды плавно расступаются перед телом, обтекают его и так же плавно смыкаются за ним. Но если скорость увеличить, то трение между водой и поверхностью тела нарушит это плавное течение. Струи воды отрываются от поверхности, завиваются в вихри. Эти вихри прочно присасываются к движущемуся телу, держат его, мешают двигаться вперед. Львиная доля всей энергии, затрачиваемой на движение, поглощается этими вихрями и безвозвратно уносится в убегающий назад поток. Поэтому потребность в энергии для движения тела сразу резко возрастает.

Если избавиться от этих непрошеных попутчиков-вихрей, станет возможным двигаться с довольно большой скоростью, но затрачивая совсем немного энергии. А если не совсем избавиться, то хотя бы уменьшить степень завихрения, хоть немного оттянуть момент появления вихрей, чтобы они возникали, когда тело достигнет большей скорости, — уже был бы огромный выигрыш. Собственно, это и есть основной, если не единственный путь, которым можно достичь быстрого движения при малой затрате энергии. Здесь и стали искать дельфиньи секреты быстрого плавания.

И хотя все подробности того, что происходит вокруг тела дельфина, когда он плывет со спринтерской скоростью, еще не до конца ясны, но многое указывает на то, что ему действительно удается ослабить завихрения воды вокруг своего тела. Может быть, для этого у него есть даже не один способ, а несколько. Во-первых, исследователи обратили внимание на особенности дельфиньей кожи. Она у них не такая, как у наземных зверей, а очень упругая и эластичная. Такая кожа может смягчать, гасить зарождающиеся на ее поверхности вихри, а это очень важно — гасить завихрения «в зародыше», в самый момент их возникновения. Как только в обтекающем потоке появится хотя бы небольшое завихрение, маленький водоворотик, он тут же разрастется, разовьется в полновесный мощный вихрь, а если такого вихря-«зародыша» нет, то поток воды еще какое-то время может двигаться плавно, ровно. Завихрения, конечно, все равно возникнут при достаточно большой скорости, но эта «разрешенная» скорость будет уже немного по больше, а та часть тела, вокруг которой бушуют вихри, — поменьше. Это уже дает чувствительный выигрыш в преодоления сопротивления воды.

Российский ученый Евгений Романенко обратил внимание на еще одно явление, возникающее при движении дельфина. Когда хвост дельфина совершает гребущие движения, изгибается не только хвостовой стебель, но в какой-то степени и все тело. По телу как будто пробегает волна — спереди назад. Эта волна «отсасывает», отгоняет возникающие вихри назад и таким образом еще больше увеличивает ту часть поверхности тела, которая свободна от прилипчивых вихрей. Снова получается выигрыш в преодолении сопротивления.

Так, используя все возможности — и идеально обтекаемую форму тела, и разные способы ослабления завихрений, — дельфин получает возможность двигаться с довольно-таки большой скоростью, не растрачивая огромного количества энергии.

Помимо снижения сопротивления движению, у дельфина есть и другие маленькие секреты, иногда совсем простые. Многие моряки имели возможность наблюдать, как дельфины играют с кораблем в догонялки. Они резвятся под самым носом быстро идущего корабля, не отставая от него даже при довольно высокой скорости. Так, на довольно большой скорости они могут плыть очень долго не уставая. Если прикинуть по обычным меркам, то даже со всеми приспособлениями для снижения сопротивления воды вроде бы не должен дельфин плыть так быстро и так долго. А секрет в том, что животные плывут наперегонки рядом с кораблем вовсе не из озорства. Корабль при движении создает попутную вол ну, и дельфины пристраиваются к ней, используя ее энергию для своего движения -как будто все время скользят по скату волны, как с горки, вниз. Фактически они ведут себя примерно так же, как искусный серфингист — мастер катания на волнах. Двигаясь все время в попутной волне за кораблем, можно быстро плыть, по чти не затрачивая энергии, как будто на буксире, то есть используя не собственную энергию, а энергию корабля. Но кораблю-то от такой буксировки никакого ущерба нет, он все равно поднимает волну — с дельфинами или без них, а животным — большая подмога. Так же могут они использовать и энергию естественных волн, если с ними по пути.

Так что рассказы моряков о том, что дельфины не просто сопровождают, а еще и обгоняют быстроходные суда в принципе вполне правдивы, но надо иметь в виду, что в таких случаях животные немного жульничают. Если, используя попутную волну, дельфин без усилий катится на ней рядом с кораблем, то, немножко поработав хвостом, он может еще и продвинуться вперед, на пример перебраться с кормовой волны на носовую. Точно так же пассажир, неторопливо прогуливающийся на этом корабле от кормы к носу, может похвастаться, что он движется быстрее самого быстроходного корабля. Но не стоит из-за этого разочаровываться в дельфиньих талантах. Как уже говорилось, они, если потребуется, могут плыть очень быстро и без посторонней помощи. А если такая помощь подвернется — глупо ведь от нее отказываться.

Если нужно плыть очень быстро, а подходящего «буксира» нет, то даже и при хорошем скольжении в во де энергии все равно не хватает, по крайней мере надолго. Тогда дельфин может взять немного энергии в долг. У кого? У самого себя, конечно, больше не у кого. Когда кислорода, поставляемого дыхательной и кровеносной системами, не хватает для выработки требуемого количества энергии, кислород одалживается из внутренних резервов — тот, который накоплен в гемоглобине крови и миоглобине мышц (об этих веществах, накапливающих кислород, говорилось выше). Потом, конечно, долги приходится отдавать: какое-то время нужно поплавать поспокойнее, чтобы кислородный запас восстановился. Но для короткого «форсажа» такие кислородные ссуды очень полезны.

Поиск

Информатика

Физика

Химия

Педсовет

Классному руководителю

Яндекс.Метрика Рейтинг@Mail.ru