Начальная школа

Русский язык

Литература

История России

Всемирная история

Биология

География

Математика

ДЫШИТЕ ГЛУБЖЕ!

 

Сколько времени может человек обходиться без воз духа? Совсем немного. Достаточно задержать дыхание на несколько десятков секунд, и мы уже чувствуем край не неприятные признаки надвигающегося удушья, грудная клетка как будто разрывается от непреодолимого желания сделать вдох. Правда, опытные пловцы ныряльщики могут нырнуть, задержав дыхание на несколько минут. Но это может сделать только хорошо тренированный человек, и после того, как он вынырнет, ему потребуется немалое время, чтобы отдышаться, восполнить возникший в организме недостаток кислорода. Да и для здоровья человека такие упражнения далеко не безвредны. В обычных же условиях мы дышим непрерывно: вдох — выдох, один за другим каждые несколько секунд.

Но дельфину такой способ дыхания не подходит. Если бы он тоже должен был дышать непрерывно, то оказался бы привязанным к поверхности воды, а в глубину мог бы нырнуть лишь совсем ненадолго. Но, ныряя лишь на короткое время, не мог бы дельфин ни пищей себя как следует обеспечить, ни от опасности укрыться — и то и другое требует немалых сил и времени, требует, чтобы под водой он передвигался совершенно спокойно в любом направлении.

И в самом деле, эти животные могут нырять под воду на весьма значительное время. Сделав вдох, дельфин уходит под воду, по крайней мере, на не сколько минут, и все это время он может активно двигаться, охотиться, то есть тратить немало энергии, а для получения энергии нужно расходовать кислород, который он может добыть только из воздуха. Потом, лишь на мгновение поднявшись к поверхности воды, дельфин сделает быстрый выдох и новый вдох (на то и другое вместе ему нужно лишь около секунды) и снова уйдет под воду еще на несколько минут, и так раз за разом в течение долгого времени. А при необходимости он может плавать под водой 10—15 минут. Более крупные китообразные — большие киты могут находиться под водой до часа, ныряя за это время на громадные глубины.

Понятно, что животному, живущему в воде, полезно уметь нырять глубоко и надолго; это ему просто необходимо, иначе не выжить. Но не совсем понятно, как это удается дельфину. Ведь законы природы неумолимы: кислород нужен любому, а такому большому и подвижному животному, как дельфин или кит, его требуется не мало. Получать же кислород из воды дельфин не может. Откуда же они берут необходимое количество кислорода для своих длительных подводных прогулок? В чем главный секрет дельфиньего дыхания?

По-моему, самым интересным во всем этом деле оказалось, что никакого особого, главного секрета в дельфиньем дыхании нет. Задача обеспечения кислородом на время долгого ныряния и активного подводного плавания настолько сложна, что решить ее каким-то одним хитрым способом оказалось, видимо, невозможно.

Дельфину приходится пользоваться целым рядом ухищрений, собирая и экономя каждый глоток драгоценного кисло рода на каждом этапе его потребления; но в сумме результат получается замечательный. Однако разберемся во всем по порядку.

Во-первых, дельфин может извлекать из воздуха значительно больше кислорода, чем наземные животные. В нормальном атмосферном воздухе, которым мы дышим, содержится около 21% кислорода, а в воздухе, выдыхаемом из наших легких, — еще целых 16%. Это да же побольше, чем в душной комнате. Такой воздух вполне еще можно повторно использовать для дыхания, чем, кстати, и пользуются врачи и спасатели, когда делают искусственное дыхание способом «рот в рот». Выходит, что при дыхании мы используем не больше четверти кислорода, содержащегося в воздухе. К этому надо добавить, что и объем своих легких мы используем, как правило, далеко не полностью: хотя этот объем составляет не сколько литров, но при спокойном дыхании в легких обменивается при каждом вдохе лишь около половины литра воздуха.

Для наземных животных и человека нет большой беды в столь неполном использовании своих дыхательных ресурсов. Но для дельфина такая роскошь совершенно недопустима. Поэтому, во-первых, вентиляция легких (смена воздуха в них) у него очень глубокая: резкий, энергичный выдох и вслед за этим такой же энергичный вдох обменивают почти 90% содержащегося в легких воздуха.

Следующий этап дельфиньей «дыхательной программы» — максимальное извлечение кислорода из того воз духа, который оказался в легких. И тут на помощь животному приходит сама ситуация ныряния. Когда дельфин уходит на глубину, давление находящейся над ним воды сжимает его тело: на глубине 10 метров под водой давление вдвое превышает атмосферное давление на поверхности, на глубине 20 метров — втрое, на глубине 30 метров вчетверо... В некоторых экспериментах дельфины-афалины регулярно ныряли на глубину 300 мет ров, а более крупные дельфины — гринды — на все 500. Там давление соответственно почти в 30 или 50 раз выше того, в котором мы существуем на суше. Наружное давление стискивает грудную клетку дельфина, сжимает находящийся в его легких воздух, и давление воздуха в них возрастает во много раз — до той же величины, что и наружное давление. Кстати, это обстоятельство потребовало особого устройства грудной клетки дельфина. Ведь если грудную клетку, например, человека, сжать так, что бы ее внутренний объем уменьшился в десятки (!) раз, то все ребра будут переломаны, легочная ткань и окружающие ткани порваны, и гибель неизбежна. А для дельфина это совершенно нормально, когда под действием внешнего давления объем заполненных воздухом легких сжимается до размеров небольшого мячика, заполненного сильно сжатым воздухом. А когда газ сжат, находится под значительным давлением, то сильно увеличивается его растворимость в жидкости, в том числе в крови: чем больше давление, тем выше растворимость газов. Это касается, естественно, и кислорода воздуха. Кислород буквально выжимается из легких в кровь — сначала в ее жидкую основу, в плазму, а там он уже захватывается красными кровяными клетками -эритроцитами -и разносится по всему организму. И выжимание кислорода из легких в кровь продолжается не секунду, не две, а все то время, пока дельфин плавает под водой. Все это время кислород постепенно поступает в кровь; таково устройство легких дельфина. Результат работы этого природного пресса для выжимания кислорода таков, что из воздуха, попавшего в легкие, дельфин извлекает кислород по чти полностью, по крайней мере процентов на 80. Уже одно это дает животному громадное преимущество перед человеком-ныряльщиком. А в некоторых экспериментах получался результат и совсем поразительный: после того как дельфин активно поплавал и поработал, выполняя задания, в выдыхаемом воздухе обнаружили лишь 2% от обычного содержания кислорода. То есть практически весь кислород был полностью высосан из воздуха, находившегося в легких.

Кстати, а как узнали, сколько кислорода извлекает дельфин из воздуха и сколько его еще остается? Очень просто. Дельфина обучили, чтобы после выполнения определенного задания нырка, подводного проплыва или какой-то подводной работы — он не сразу всплывал к поверхности воды для выдоха и вдоха, а сначала подплывал под опущенную в воду перевернутую воронку и под ней выдыхал воздух, а уж потом всплывал к поверхности воды для нового вдоха. Весь выдохнутый воздух оказывался «пойманным» воронкой, откуда уже не составляло труда забрать его по тонкому шлангу в прибор для анализа химического состава. Дальнейшее уже было делом простой техники: прибор-анализатор определял содержание в выдохнутом воздухе разных газов — азота, кислорода, углекислого газа и точно показывал, сколько кислорода было израсходовано и сколько оста лось.

Но и полное извлечение кислорода из воздуха — это еще не все. Значительное количество кислорода может быть припрятано впрок во всем теле дельфина. Известно, что кислород, попавший в кровь, связывается и пере носится во все уголки тела с помощью специального вещества, содержащегося в красных кровяных клетках, гемоглобина; именно он и придает крови красный цвет. Когда кровь омывает легкие, гемоглобин легко вступает в химическое соединение с кислородом. В таком виде вместе с кислородом — гемоглобин внутри красных кровяных клеток разносится током крови по всем тканям тела, а там кислород легко отсоединяется от гемоглобина и поступает из крови во все другие ткани. Но ведь гемоглобин, присоединивший кислород, — это не только переносчик кислорода, это еще и немалый его резерв. Если дельфин задержался под водой, то кислород, находившийся в легких, может быть уже полностью израсходован и не поступает из легких в кровь, но, связанный с гемоглобином, он еще продолжает и продолжает понемножку проникать из красных кровяных клеток в страдающие кислородным голодом ткани организма, подпитывая их. Ясно, что этот кислородный резерв — очень важное подспорье для ныряющего животного. И чем больше запасено связанного с гемоглобином кислорода, тем лучше.

Природа позаботилась и о том, чтобы этот кислородный резерв у дельфина тоже был побольше. Мало того, что содержание гемоглобина в крови у этих животных очень высоко (а значит, велико и количество соединившегося с гемоглобином кислорода), вещество, подобное гемоглобину, в большом количестве находится у дельфина еще и в мышцах. По аналогии с гемоглобином (при ставка «гемо» означает «кровяной») это вещество называют миоглобином («мио» означает «мышечный»). Миоглобин действует точно так же, как гемоглобин: легко вступает в соединение с кислородом, связывая его, но так же легко и освобождает кислород, позволяя ему проникать обратно в кровь. Пока кровь дельфина богата кислородом, миоглобин связывает кислород, запасает его, создавая резерв. Как только концентрация кислорода в крови снижается, миоглобин начинает постепенно отдавать кислород, резерв расходуется. Этот дополни тельный резерв драгоценного кислорода оказывается для дельфина очень ценным подспорьем при длительном нырянии.

Полно извлекать кислород из воздуха, создавать в организме его запасы — все это необходимо для ныряющего животного, но еще недостаточно. Все равно при долгом пребывании под водой кислород — на вес золота. Поэтому не менее важно не только как следует запастись кислородом, но и экономно, рационально его использовать. В этом дельфины тоже большие мастера. Их кровеносная система заботится о том, чтобы при нырянии должным образом распределить поток крови. А распре делить его следует так, чтобы в первую очередь обеспечить кислородом самые важные и наиболее ранимые при кислородном голодании органы — мозг и сердце: ведь если они пострадают от удушья, тогда — беда. Потому и снабжаются они кровью наиболее обильно. Следующими в очереди на обеспечение кислородом идут активно работающие мышцы: именно они гарантируют движение дельфина под водой, и на это — никуда не денешься приходится тратить много энергии, а для получения энергии нужен кислород. И уж совсем в хвосте этой очереди оказываются многие внутренние органы — желудок, кишечник и все остальное: ведь заняться, к примеру, перевариванием пищи можно и в более благоприятной обстановке, когда нет кислородного дефицита.

Но и сами внутренние органы тоже приспосабливаются к работе в таких необычных условиях. В первую очередь это касается сердца. У здоровых животных и человека сердце работает очень ритмично. Частота сердечных сокращений может, конечно, меняться в довольно широких пределах: в покое удары сердца реже, при большой физической нагрузке или при сильном волнении намного чаще. Но если взять относительно небольшой отрезок времени, в течение которого состояние организма более или менее одинаково, то сокращения сердца равномерны, интервалы между ударами практически постоянны; они чуть-чуть меняются в такт дыханию, но совсем немного.

Совсем по-иному выглядит работа сердца у дельфина. Частота сердечных сокращений все время меняется в такт дыханию, и меняется очень сильно. Посмотрите на рисунок: вот дельфин сделал очередной вдох — и сердце забилось часто-часто, стараясь поскорее разогнать вновь поступившую порцию кислорода по всем органам. Но время идет, и сокращения сердца становятся все реже и реже. Вот частота ударов замедлилась уже в несколько раз по сравнению с первоначальной, но продолжает все еще замедляться. Удары сердца отстают один от другого: томительные паузы длятся по нескольку секунд. Кажется, еще немного, и очередного удара вообще не последует, сердце остановится совсем. Но в это время следует новый вдох — и сердце мгновенно «просыпается», снова начиная в ураганном темпе гнать кровь по сосудам во все органы, заждавшиеся живительного кислорода. А через несколько секунд ритм сердечных ударов снова начинает замедляться... И так на каждом дыхательном цикле. Любой врач-кардиолог, если он не знаком с хитростями дельфиньего организма, пришел бы в ужас при виде та кой электрокардиограммы, а для дельфина такой режим работы сердца не только нормален, но и очень полезен. В конце дыхательной паузы, когда запас кислорода в организме на исходе, редкие сердечные сокращения выгодны вдвойне: во-первых, само сердце требует для своей работы меньше кислорода, а во-вторых, скупое кровоснабжение всех органов, за исключением самых важных, помогает растянуть последние остатки кислорода на возможно более длительный срок.

Что же получается? Выходит, что природа так и не изобрела ничего достойного внимания для обеспечения дельфина кислородом на время его подводных прогулок? Как можно полнее извлекать кислород из воздуха, создавать по возможности резерв «на черную минуту», не транжирить попусту, а расходовать экономно на самое необходимое — эка невидаль все эти рецепты, это же все само собой разумеется, тут и изобретать ничего не надо. Как говорил один из персонажей бессмертного романа: «Подумаешь, бином Ньютона!» Так что же — ничего интересного?

А может быть, это и есть самое интересное: то, что замечательный результат — способность долгое время находиться под водой с небольшим запасом воздуха в легких, при этом активно двигаясь, но не испытывая удушья — достигается самыми вроде бы простыми и очевидными средствами, если эти средства должным образом сочетаются.

И вот что еще поучительно. Ведь задача длительного и глубокого ныряния у дельфинов решается не количеством потребляемого воздуха, а полным и экономным его использованием, что дает им и другие ценнейшие преимущества. Дельфин оказывается в намного более вы годном положении не только по сравнению с человеком-ныряльщиком, но и по сравнению с человеком-водолазом, который «досыта» обеспечен для дыхания воздухом, поступающим из баллона или от компрессора.

Казалось бы, у водолаза есть огромное преимущество перед дельфином, не говоря уж о «невооруженном» ныряльщике: у водолаза воздуха сколько угодно, за ним не нужно то и дело выныривать на поверхность — дыши се беспокойно, пока есть запас сжатого воздуха в баллоне дыхательного аппарата или пока воздух исправно поступает по шлангу от компрессора. Но за это преимущество водолазу приходится дорого расплачиваться.

Выше я уже упоминал о том, что под водой тело чело века или животного находится под большим давлением. Под точно таким же давлением приходится подавать воз дух и в легкие водолаза: внешнее давление и давление воздуха в легких должны быть одинаковыми, иначе водолаз просто не сможет вдохнуть воздух, внешнее давление воды, как мощный пресс, сожмет его грудную клетку. Но при большом давлении — об этом тоже упоминалось не много раньше — значительно увеличивается растворимость газов в жидкостях, в том числе в крови и во всех жидкостях тканей организма. Тогда речь шла о растворении кислорода. Но воздух на 80% образован азотом, и этот газ тоже растворяется в крови тем лучше, чем выше давление. И если кислород, растворившийся в плазме (жидкости) крови тут же захватывается, связывается гемоглобином, содержащимся в красных кровяных клетках, то азот так и остается растворенным в плазме крови и в тканях организма. И чем больше давление воздуха, которым дышит водолаз, тем больше азота может раствориться в его крови и других тканях.

Что же происходит, когда после долгой работы под водой, в условиях большого давления, водолаз поднимается на поверхность? Давление падает до нормального, и количество азота, растворенного в крови и тканях, теперь гораздо больше, чем может растворяться при невысоком атмосферном давлении. И весь этот излишек рас творенного газа начнет выделяться из крови и тканей. Если давление снижается постепенно, то в этом нет ни чего страшного: избыток газа будет постепенно выводиться из организма через легкие, и все пройдет благополучно. Но если давление падает резко, происходит катастрофа. Выделяющийся газ не успевает выводиться из организма, и кровь вскипает миллионами мелких пузырьков газа. Все происходит точно так же, как при не умелом откупоривании бутылки с шампанским или с газированной водой. Суть явлений одна и та же: в содержимом бутылки тоже был растворен газ под значительным давлением (не азот, а другой газ — углекислый, но сути дела это не меняет), а после извлечения пробки давление резко падает, и газ высвобождается с бурным выделением пузырей. Когда такой процесс происходит в бутылке с шампанским, он грозит неприятностью не более страшной, чем облитая скатерть. Но когда то же самое происходит в живом организме — беда. Пузырьки газа, попадая в мелкие кровеносные сосуды, наглухо закупоривают их, лишая органы и ткани кровоснабжения; расширяющиеся пузырьки рвут живые ткани... Если этот процесс происходит достаточно бурно, то неминуема не медленная гибель. В лучшем случае — если газовыделение было не очень сильным — возникает тяжелое заболевание, называемое декомпрессионной болезнью (де компрессия — снятие давления). Если водолазу в таком состоянии не оказать немедленную помощь, он может остаться инвалидом на всю жизнь. А помочь ему может только одно: нужно немедленно поместить его в специальную герметичную камеру (ее называют декомпрессионной камерой) и создать в ней высокое давление. Давление снова увеличит растворимость газов в крови, начавшие было разрастаться газовые пузырьки съежатся, растворятся, и водолаз сразу почувствует себя лучше. А уж потом можно постепенно, не торопясь снижать давление в камере, чтобы выделяющиеся из крови газы ус певали выводиться без образования пузырьков. Когда в конце концов давление будет доведено до нормального, можно выпустить водолаза на волю.

Чтобы избежать декомпрессионной болезни, чтобы не рисковать своей жизнью и здоровьем, водолаз, поработавший на значительной глубине, должен подниматься на поверхность не сразу, а постепенно, чтобы медлен но снижалось давление воздуха, которым он дышит, и ус певали выходить растворенные в крови газы. И чем больше глубина, на которой работал водолаз, тем больше растворено газов в его крови и тем дольше ему приходится подниматься на поверхность. Если глубина большая, то, проработав под водой полчаса, он должен после этого потратить несколько часов, чтобы подняться на поверхность! Согласитесь, не очень-то удобно. А если за это время на море начнется шторм, и судно, обеспечивающее подводную работу должно срочно сняться с якоря и уйти? Тогда выход один: срочно поднимать водолаза с риском для его жизни и, как только он окажется на бор ту, сразу же поместить его в декомпрессионную камеру. Такая камера обязательно есть на борту каждого хорошего специального судна, и повезет, если водолаза поместили туда не слишком поздно. Вот какими хлопотами и опасностями оборачивается для человека возможность пользоваться водолазной техникой.

Ну а как же дельфин? Ведь, пробыв довольно долгое время под водой на глубине нескольких десятков метров, он стрелой вылетает на поверхность для очередного вдоха, нисколько не заботясь о снятии давления; но ничего похожего на декомпрессионную болезнь при этом у него не возникает. А секрет предельно прост. У водолаза все проблемы возникают потому, что через его легкие протекает огромное количество воздуха, в изобилии подаваемое от компрессора или из баллона: сотни, иногда тысячи литров (в пересчете на нормальное атмосферное давление). При этом в крови растворяется столько азота, сколько она может вместить под данным давлением — до полного насыщения. Неудивительно, что при сбросе давления начинается бурное выделение газовых пузырей.

Дельфину же приходится обходиться без компрессора и без акваланга, в его распоряжении только те несколько литров воздуха, которые он набрал в легкие при послед нем вдохе. Если с таким запасом воздуха животное нырнет даже на большую глубину, где высокое давление за ставит раствориться в его крови почти весь азот этого воздуха, все равно этого количества недостаточно, чтобы насытить кровь азотом до опасного предела. Поэтому дельфин может смело подниматься на поверхность: азота в его крови совсем немного, никакого «вскипания» крови не произойдет.

Значит, если действовать «не числом, а умением» решать проблему ныряния не количеством потребляемого воздуха, а умелым его использованием, — то это вы годно во всех отношениях.

Поиск

Информатика

Физика

Химия

Педсовет

Классному руководителю

Яндекс.Метрика Рейтинг@Mail.ru